Newer
Older
## The foundations of Deep Learning for images
* [Alexandre Meyer](https://perso.liris.cnrs.fr/alexandre.meyer)
* [L'ancienne page de cette partie](https://perso.liris.cnrs.fr/alexandre.meyer/public_html/www/doku.php?id=image_deeplearning)
* [CM1](doc/DLIM-CM1_NN.pdf): Introduction to neural networks (forward and backpropagation)
* [CM2](doc/DLIM-CM2_CNN.pdf): Convolution Neural Networks (CNN)
* [CM3](doc/DLIM-CM3_TowardGeneration.pdf): towards generative approaches and processing other types of data (AE, GAN skeleton-based)
* [CM4](doc/DLIM-CM4_Vision.pdf): the "modern" vision (Segmentation, Tracking-YOLO, Transformer for Images)
<!---
- La vidéo du CM de la 1ère partie : TODO
- La vidéo du CM de la 2e partie
<iframe width="560" height="315" src="//www.youtube.com/embed/ge7V2C7eVWk" frameborder="0" allowfullscreen></iframe>
-->
1. [A neural network from scratch](tp_nnfromscratch). (Python, numpy)
1. [2D Point Classification](tp_classificationpoint). (Pytorch) (If you follow the Master's Course, do not do it, go to question 2)
2. [Image classification using Convolution Neural Networks](tp_classificationcnn). (CNN, Pytorch)
4. [Gesture transfer and person image generation](tp_dance)
* [Old TP: autoencoder and animation](tp_aeanimation)