--- title: "Vision, image and machine learning (partie AM)" description: "Partie A. Meyer" --- ## The foundations of Deep Learning for images * [Alexandre Meyer](https://perso.liris.cnrs.fr/alexandre.meyer) <!--- * [L'ancienne page de cette partie](https://perso.liris.cnrs.fr/alexandre.meyer/public_html/www/doku.php?id=image_deeplearning) -->  ### Le Cours * [CM1](doc/DLIM-CM1_NN.pdf): Introduction to neural networks (forward and backpropagation) * [CM2](doc/DLIM-CM2_CNN.pdf): Convolution Neural Networks (CNN) * [CM3](doc/DLIM-CM3_TowardGeneration.pdf): towards generative approaches and processing other types of data (AE, GAN skeleton-based) * [CM4](doc/DLIM-CM4_Vision.pdf): the "modern" vision (Segmentation, Tracking-YOLO, Transformer for Images) <!--- - La vidéo du CM de la 1ère partie : TODO - La vidéo du CM de la 2e partie <iframe width="560" height="315" src="//www.youtube.com/embed/ge7V2C7eVWk" frameborder="0" allowfullscreen></iframe> --> ### Tutorials (TP) 0. [Installation](tp_installation) 1. [A neural network from scratch](tp_nnfromscratch). (Python, numpy) 2. Classification 1. [2D Point Classification](tp_classificationpoint). (Pytorch) (If you follow the Master's Course, do not do it, go to question 2) 2. [Image classification using Convolution Neural Networks](tp_classificationcnn). (CNN, Pytorch) 3. [Style transfer between images](tp_style). (Pytorch) 4. [Gesture transfer and person image generation](tp_dance) * [Old TP: autoencoder and animation](tp_aeanimation)