
1. 1. IntroductionIntroduction
For our neural network to learn we need to adjust its weights and biases. This meansFor our neural network to learn we need to adjust its weights and biases. This means  
calculating the gradient of the cost with respect to every weight and bias in the network.calculating the gradient of the cost with respect to every weight and bias in the network.
For convenience, we will store this gradient as two separate matrices for each layer: a 2DFor convenience, we will store this gradient as two separate matrices for each layer: a 2D  
matrix of how much the cost changes when you adjust each weight (matrix of how much the cost changes when you adjust each weight ( ) and a 1D matrix) and a 1D matrix  ∂C∂C

∂w∂w

of how much the cost changes when you adjust each bias (of how much the cost changes when you adjust each bias ( ). Each row of the 2D weight). Each row of the 2D weight  ∂C∂C

∂b∂b

gradient will represent a destination neuron, and each column an input neuron. Thisgradient will represent a destination neuron, and each column an input neuron. This  
simplifies our vector calculations (simplifies our vector calculations (more on this heremore on this here).).
Once we have the gradient, we can adjust the weights & biases by subtracting from themOnce we have the gradient, we can adjust the weights & biases by subtracting from them  
the gradient multiplied by a learning rate (typically a very small number).the gradient multiplied by a learning rate (typically a very small number).
  
Note that we can only calculate the gradient after running a sample (or a batch ofNote that we can only calculate the gradient after running a sample (or a batch of  
samples) through the network. We must then start by doing so, making sure to store thesamples) through the network. We must then start by doing so, making sure to store the  
activations of each layer as we go - as those will be needed for our calculations.activations of each layer as we go - as those will be needed for our calculations.
  
This document was written for a neural network where every layer except the last has aThis document was written for a neural network where every layer except the last has a  
sigmoid activation function, and where the last layer has a softmax activation followed bysigmoid activation function, and where the last layer has a softmax activation followed by  
the cross entropy cost. The entirety of the document is agnostic to the number of layersthe cross entropy cost. The entirety of the document is agnostic to the number of layers  
and their size. A large part of the document is also agnostic to the cost or activationand their size. A large part of the document is also agnostic to the cost or activation  
functions, which only show up in part 3.functions, which only show up in part 3.
  

2. 2. Chain ruleChain rule
The overarching goal of backpropagation is to calculate the gradient for every weight andThe overarching goal of backpropagation is to calculate the gradient for every weight and  
bias in the network. The chain rule tells us that:bias in the network. The chain rule tells us that:
  

== ⋅⋅ ⋅⋅
∂C∂C

∂w∂wll
ijij

∂z∂z

∂w∂w

ll
ii

ll
ijij

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂all
ii

  
andand

== ⋅⋅ ⋅⋅
∂C∂C

∂b∂bll
ii

∂z∂z

∂b∂b

ll
ii

ll
ii

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂all
ii

  
Where Where  is the cost,  is the cost,  is the weight connecting neuron  is the weight connecting neuron  of layer  of layer  to neuron  to neuron  of of  CC wwll

ijij jj ll -- 11 ii

layer layer , ,  is the weighted input of neuron  is the weighted input of neuron  of layer  of layer , ,  is the activation of neuron  is the activation of neuron  of of  ll zzll
ii ii ll aall

ii ii

layer layer , and , and  is the bias of neuron  is the bias of neuron  of layer  of layer . In this document we use the superfix. In this document we use the superfixll bbll
ii ii ll

 not for exponentiation but for indexing the layer a variable belongs to. not for exponentiation but for indexing the layer a variable belongs to.this thing herethis thing here(( ))

The last factor The last factor  of these formulas shows us that in order to compute the weight and of these formulas shows us that in order to compute the weight and  
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∂a∂all
ii

(1)(1)

(2)(2)

http://neuralnetworksanddeeplearning.com/chap2.html#warm_up_a_fast_matrix-based_approach_to_computing_the_output_from_a_neural_network


bias gradients we will also need to calculate the gradient with respect to the activations.bias gradients we will also need to calculate the gradient with respect to the activations.  
For the last layer of the network it can be calculated directly using the derivative of theFor the last layer of the network it can be calculated directly using the derivative of the  
cost function, but for the other layers it is expanded as follows:cost function, but for the other layers it is expanded as follows:
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Where the sum is over all Where the sum is over all  neurons of layer  neurons of layer ..kk ll++ 11

This formula is very similar to This formula is very similar to  and  and , with the last two factors also being present in, with the last two factors also being present in  (1)(1) (2)(2)
the others. This hints at the fact that we can reuse some of the calculations whenthe others. This hints at the fact that we can reuse some of the calculations when  
computing these formulas later.computing these formulas later.

The last factor The last factor  will need to be expanded again if layer  will need to be expanded again if layer  is not yet the last layer, is not yet the last layer,  
∂C∂C

∂a∂allkk
ll++ 11

and so on. This makes evident how calculating the gradients involves starting with the lastand so on. This makes evident how calculating the gradients involves starting with the last  
layer, and then backpropagating through the network: the gradients of each layer dependlayer, and then backpropagating through the network: the gradients of each layer depend  
on how that layer's activations affect the following layers.on how that layer's activations affect the following layers.
  

3. 3. Calculating the derivativesCalculating the derivatives
We can now move on to calculating the derivatives present in the chain rule expressionsWe can now move on to calculating the derivatives present in the chain rule expressions  
above, so that we can turn them into something we can actually use.above, so that we can turn them into something we can actually use.
  
The weighted input for each neuron is calculated in the following way:The weighted input for each neuron is calculated in the following way:
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The sum is over all The sum is over all  neurons of the previous layer  neurons of the previous layer . The first layer for which the. The first layer for which the  jj ll -- 11

weighted input is calculated comes after the input layer, so that we always have a layerweighted input is calculated comes after the input layer, so that we always have a layer  
. We will need the partial derivatives of . We will need the partial derivatives of  with respect to each of its inputs: with respect to each of its inputs:ll -- 11 zz
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We will also need the derivatives involving the cost function and the activation functions.We will also need the derivatives involving the cost function and the activation functions.  
Different layers can have different activation functions, which is the case for our network:Different layers can have different activation functions, which is the case for our network:  
our last layer has a softmax activation function, while the previous layers all have aour last layer has a softmax activation function, while the previous layers all have a  
sigmoid activation function. We will deal with these and the cost function later in thissigmoid activation function. We will deal with these and the cost function later in this  
document.document.
  

(3)(3)



We can now replace the weighted input derivatives in We can now replace the weighted input derivatives in , , , and , and  with the results we with the results we  (1)(1) (2)(2) (3)(3)
just calculated:just calculated:
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4. 4. Backpropagating the last layerBackpropagating the last layer
We now need to calculate the derivatives for the cost and activation functions used in ourWe now need to calculate the derivatives for the cost and activation functions used in our  
neural network. We will start by dealing with the last layer, where we are using a softmaxneural network. We will start by dealing with the last layer, where we are using a softmax  
activation followed by the cross entropy cost. This cost is calculated in the following way:activation followed by the cross entropy cost. This cost is calculated in the following way:
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Where the first sum is over all Where the first sum is over all  training samples, the second sum is over all  training samples, the second sum is over all  neurons in neurons in  nn ii

the last layer, the last layer,  is the ground truth activation for neuron  is the ground truth activation for neuron , and , and  is that neuron's actual is that neuron's actual  yyii ii aaii
activation.activation.
  
However, the function we derive for the cost is the loss function, which calculates the costHowever, the function we derive for the cost is the loss function, which calculates the cost  
for a single sample:for a single sample:
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There is a clever simplification for calculating the derivatives of the last layer. When itThere is a clever simplification for calculating the derivatives of the last layer. When it  
applies a softmax activation followed by the cross entropy loss, as described on page 3 ofapplies a softmax activation followed by the cross entropy loss, as described on page 3 of  
https://www.ics.uci.edu/~pjsadows/notes.pdfhttps://www.ics.uci.edu/~pjsadows/notes.pdf, we end up with the formula:, we end up with the formula:
  

(4)(4)

(5)(5)

(6)(6)

https://www.ics.uci.edu/~pjsadows/notes.pdf


== aa -- yy
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Where Where  is the ground truth activation for neuron  is the ground truth activation for neuron , and , and  is its actual activation. is its actual activation.yyii ii aaii
This formula replaces the last two factors of This formula replaces the last two factors of , , , and , and ::(1)(1) (2)(2) (3)(3)
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Formulas Formulas  and  and  then become: then become:(4)(4) (5)(5)
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There is no need to calculate There is no need to calculate  for the last layer, as the formulas above stand on their for the last layer, as the formulas above stand on their  (6)(6)
own.own.
With a little analysis, we can convert them into vectorized expressions:With a little analysis, we can convert them into vectorized expressions:
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Note that all vectors are assumed to be column vectors, meaning the same as a matrixNote that all vectors are assumed to be column vectors, meaning the same as a matrix  
with just one column. Subtraction is element-wise, and with just one column. Subtraction is element-wise, and  represents matrix multiplication. represents matrix multiplication.⋅⋅

  

5. 5. Backpropagating the remaining layersBackpropagating the remaining layers
  
The remaining layers of our neural network apply a sigmoid activation to the weightedThe remaining layers of our neural network apply a sigmoid activation to the weighted  
inputs:inputs:
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And thus the derivative of the activations becomes:And thus the derivative of the activations becomes:
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We will use the same expression We will use the same expression  to denote both the scalar and the vectorized version to denote both the scalar and the vectorized version  𝜎'𝜎'

of the sigmoid's derivative. The version being used can be inferred from context: if we areof the sigmoid's derivative. The version being used can be inferred from context: if we are  
passing in a vector, we are using the vectorized version:passing in a vector, we are using the vectorized version:
  

𝜎'𝜎' aa   == 𝜎𝜎 aa ⊙⊙ 11-- 𝜎𝜎 aa(( )) (( )) (( (( ))))

  
Where Where  represents the sigmoid function applied elementwise to vector  represents the sigmoid function applied elementwise to vector , ,   𝜎𝜎 aa(( )) aa ⊙⊙

represents the hadamard (element-wise) product, and the subtraction operation is alsorepresents the hadamard (element-wise) product, and the subtraction operation is also  
applied element-wise.applied element-wise.  
  
Formulas Formulas  and  and  then become: then become:(4)(4) (5)(5)
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We can rewrite these as vectorized expressions:We can rewrite these as vectorized expressions:
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Where all vectors are assumed to be column vectors.Where all vectors are assumed to be column vectors.
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Note that we still have to specify Note that we still have to specify , which depends on the kind of layer that comes after, which depends on the kind of layer that comes after  
∂C∂C
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layer layer ..ll
  
If the next layer is not yet the last, and has a sigmoid activation (as all non-final layers inIf the next layer is not yet the last, and has a sigmoid activation (as all non-final layers in  
our network), formula our network), formula  will become: will become:(6)(6)
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Which can be vectorized into the form:Which can be vectorized into the form:
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If layer If layer  is the last layer, however, two things are different: we have a softmax is the last layer, however, two things are different: we have a softmax  ll++ 11

activation function, and we can calculate the derivative of the cost directly. Since weactivation function, and we can calculate the derivative of the cost directly. Since we  
already calculated an expression already calculated an expression  that combines the two missing derivatives, we just that combines the two missing derivatives, we just  (7)(7)
need to insert it into need to insert it into ::(6)(6)
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We can also vectorize this expression:We can also vectorize this expression:
  

== ww ⋅⋅ aa -- yy
∂C∂C

∂a∂all
l+1l+1

TT l+1l+1

  
Where the subtraction applies element-wise, Where the subtraction applies element-wise,  represents matrix multiplication, and represents matrix multiplication, and  ⋅⋅

vectors are 1-column matrices by default.vectors are 1-column matrices by default.
  

6. 6. In practiceIn practice
  
When it comes to implementing backpropagation in code, the formulas to apply are theWhen it comes to implementing backpropagation in code, the formulas to apply are the  
final vectorized expressions: final vectorized expressions: , , , , , , , , , and , and ..(8)(8) (9)(9) (10)(10) (11)(11) (12)(12) (13)(13)
  
Here is a rough overview of the steps that need to be taken:Here is a rough overview of the steps that need to be taken:
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1. 1. Feedforward a sample through the network, storing activations of each layer alongFeedforward a sample through the network, storing activations of each layer along  
the waythe way

2. 2. Calculate cost and store for reference (since we are not training in batches, we canCalculate cost and store for reference (since we are not training in batches, we can  
track the accuracy of the model as we train by logging how many of the last track the accuracy of the model as we train by logging how many of the last   xx
samples were guessed correctly. The global accuracy can be logged every epoch)samples were guessed correctly. The global accuracy can be logged every epoch)

3. 3. Calculate gradient for weights & biases of last layerCalculate gradient for weights & biases of last layer
4. 4. Calculate gradient for activations of the previous layerCalculate gradient for activations of the previous layer
5. 5. Use the activations gradient to calculate weights & biases gradientUse the activations gradient to calculate weights & biases gradient
6. 6. Repeat until input layer is reachedRepeat until input layer is reached
7. 7. Update weights & biases by subtracting the gradient multiplied by a small learningUpdate weights & biases by subtracting the gradient multiplied by a small learning  

raterate
8. 8. Go back to 1.Go back to 1.


