1. Introduction

For our neural network to learn we need to adjust its weights and biases. This means
calculating the gradient of the cost with respect to every weight and bias in the network.
For convenience, we will store this gradient as two separate matrices for each layer: a 2D

matrix of how much the cost changes when you adjust each weight (%) and a 1D matrix

of how much the cost changes when you adjust each bias (2—5). Each row of the 2D weight

gradient will represent a destination neuron, and each column an input neuron. This
simplifies our vector calculations (more on this here).

Once we have the gradient, we can adjust the weights & biases by subtracting from them
the gradient multiplied by a learning rate (typically a very small number).

Note that we can only calculate the gradient after running a sample (or a batch of
samples) through the network. We must then start by doing so, making sure to store the
activations of each layer as we go - as those will be needed for our calculations.

This document was written for a neural network where every layer except the last has a
sigmoid activation function, and where the last layer has a softmax activation followed by
the cross entropy cost. The entirety of the document is agnostic to the number of layers
and their size. A large part of the document is also agnostic to the cost or activation
functions, which only show up in part 3.

2. Chain rule

The overarching goal of backpropagation is to calculate the gradient for every weight and
bias in the network. The chain rule tells us that:
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Where C is the cost, wll-]. is the weight connecting neuron j of layer [ — 1 to neuron i of
layer [, zll. is the weighted input of neuron i of layer [, af is the activation of neuron i of
layer [, and bll- is the bias of neuron i of layer . In this document we use the superfix
(this thing here) not for exponentiation but for indexing the layer a variable belongs to.
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The last factor ? of these formulas shows us that in order to compute the weight and
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bias gradients we will also need to calculate the gradient with respect to the activations.
For the last layer of the network it can be calculated directly using the derivative of the
cost function, but for the other layers it is expanded as follows:
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Where the sum is over all k neurons of layer [ + 1.
This formula is very similar to (1) and (2), with the last two factors also being present in
the others. This hints at the fact that we can reuse some of the calculations when
computing these formulas later.
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and so on. This makes evident how calculating the gradients involves starting with the last
layer, and then backpropagating through the network: the gradients of each layer depend
on how that layer's activations affect the following layers.

3. Calculating the derivatives

We can now move on to calculating the derivatives present in the chain rule expressions
above, so that we can turn them into something we can actually use.

The weighted input for each neuron is calculated in the following way:
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The sum is over all j neurons of the previous layer [ — 1. The first layer for which the
weighted input is calculated comes after the input layer, so that we always have a layer
[ — 1. We will need the partial derivatives of z with respect to each of its inputs:
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We will also need the derivatives involving the cost function and the activation functions.
Different layers can have different activation functions, which is the case for our network:
our last layer has a softmax activation function, while the previous layers all have a
sigmoid activation function. We will deal with these and the cost function later in this
document.



We can now replace the weighted input derivatives in (1), (2), and (3) with the results we
just calculated:
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4. Backpropagating the last layer

We now need to calculate the derivatives for the cost and activation functions used in our
neural network. We will start by dealing with the last layer, where we are using a softmax
activation followed by the cross entropy cost. This cost is calculated in the following way:
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Where the first sum is over all n training samples, the second sum is over all i neurons in
the last layer, y; is the ground truth activation for neuron 7, and 4; is that neuron's actual
activation.

However, the function we derive for the cost is the loss function, which calculates the cost
for a single sample:

C= E]/i ln[%]

There is a clever simplification for calculating the derivatives of the last layer. When it
applies a softmax activation followed by the cross entropy loss, as described on page 3 of
https://www.ics.uci.edu/~pjsadows/notes.pdf, we end up with the formula:
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Where y; is the ground truth activation for neuron i, and a; is its actual activation.
This formula replaces the last two factors of (1), (2), and (3):
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Formulas (4) and (5) then become:
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There is no need to calculate (6) for the last layer, as the formulas above stand on their

own.
With a little analysis, we can convert them into vectorized expressions:
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Note that all vectors are assumed to be column vectors, meaning the same as a matrix
with just one column. Subtraction is element-wise, and - represents matrix multiplication.

5. Backpropagating the remaining layers

The remaining layers of our neural network apply a sigmoid activation to the weighted

inputs:
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And thus the derivative of the activations becomes:
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We will use the same expression ¢’ to denote both the scalar and the vectorized version
of the sigmoid's derivative. The version being used can be inferred from context: if we are
passing in a vector, we are using the vectorized version:
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Where o(a) represents the sigmoid function applied elementwise to vector a, ®
represents the hadamard (element-wise) product, and the subtraction operation is also
applied element-wise.

Formulas (4) and (5) then become:
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We can rewrite these as vectorized expressions:
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Where all vectors are assumed to be column vectors.
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Note that we still have to specify —, which depends on the kind of layer that comes after

layer [.

If the next layer is not yet the last, and has a sigmoid activation (as all non-final layers in
our network), formula (6) will become:
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Which can be vectorized into the form:
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If layer [ + 1 is the last layer, however, two things are different: we have a softmax
activation function, and we can calculate the derivative of the cost directly. Since we
already calculated an expression (7) that combines the two missing derivatives, we just
need to insert it into (6):
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We can also vectorize this expression:
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Where the subtraction applies element-wise, - represents matrix multiplication, and
vectors are 1-column matrices by default.

6. In practice

When it comes to implementing backpropagation in code, the formulas to apply are the
final vectorized expressions: (8), (9), (10), (11), (12), and (13).

Here is a rough overview of the steps that need to be taken:
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. Feedforward a sample through the network, storing activations of each layer along

the way

. Calculate cost and store for reference (since we are not training in batches, we can

track the accuracy of the model as we train by logging how many of the last x
samples were guessed correctly. The global accuracy can be logged every epoch)

. Calculate gradient for weights & biases of last layer

. Calculate gradient for activations of the previous layer

. Use the activations gradient to calculate weights & biases gradient

. Repeat until input layer is reached

. Update weights & biases by subtracting the gradient multiplied by a small learning

rate

. Go back to 1.



