
1. 1. IntroductionIntroduction
For our neural network to learn we need to adjust its weights and biases. This meansFor our neural network to learn we need to adjust its weights and biases. This means
calculating the gradient of the cost with respect to every weight and bias in the network.calculating the gradient of the cost with respect to every weight and bias in the network.
For convenience, we will store this gradient as two separate matrices for each layer: a 2DFor convenience, we will store this gradient as two separate matrices for each layer: a 2D
matrix of how much the cost changes when you adjust each weight (matrix of how much the cost changes when you adjust each weight () and a 1D matrix) and a 1D matrix ∂C∂C

∂w∂w

of how much the cost changes when you adjust each bias (of how much the cost changes when you adjust each bias (). Each row of the 2D weight). Each row of the 2D weight ∂C∂C

∂b∂b

gradient will represent a destination neuron, and each column an input neuron. Thisgradient will represent a destination neuron, and each column an input neuron. This
simplifies our vector calculations (simplifies our vector calculations (more on this heremore on this here).).
Once we have the gradient, we can adjust the weights & biases by subtracting from themOnce we have the gradient, we can adjust the weights & biases by subtracting from them
the gradient multiplied by a learning rate (typically a very small number).the gradient multiplied by a learning rate (typically a very small number).

Note that we can only calculate the gradient after running a sample (or a batch ofNote that we can only calculate the gradient after running a sample (or a batch of
samples) through the network. We must then start by doing so, making sure to store thesamples) through the network. We must then start by doing so, making sure to store the
activations of each layer as we go - as those will be needed for our calculations.activations of each layer as we go - as those will be needed for our calculations.

This document was written for a neural network where every layer except the last has aThis document was written for a neural network where every layer except the last has a
sigmoid activation function, and where the last layer has a softmax activation followed bysigmoid activation function, and where the last layer has a softmax activation followed by
the cross entropy cost. The entirety of the document is agnostic to the number of layersthe cross entropy cost. The entirety of the document is agnostic to the number of layers
and their size. A large part of the document is also agnostic to the cost or activationand their size. A large part of the document is also agnostic to the cost or activation
functions, which only show up in part 3.functions, which only show up in part 3.

2. 2. Chain ruleChain rule
The overarching goal of backpropagation is to calculate the gradient for every weight andThe overarching goal of backpropagation is to calculate the gradient for every weight and
bias in the network. The chain rule tells us that:bias in the network. The chain rule tells us that:

== ⋅⋅ ⋅⋅
∂C∂C

∂w∂wll
ijij

∂z∂z

∂w∂w

ll
ii

ll
ijij

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂all
ii

andand

== ⋅⋅ ⋅⋅
∂C∂C

∂b∂bll
ii

∂z∂z

∂b∂b

ll
ii

ll
ii

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂all
ii

Where Where is the cost, is the cost, is the weight connecting neuron is the weight connecting neuron of layer of layer to neuron to neuron of of CC wwll

ijij jj ll -- 11 ii

layer layer , , is the weighted input of neuron is the weighted input of neuron of layer of layer , , is the activation of neuron is the activation of neuron of of ll zzll
ii ii ll aall

ii ii

layer layer , and , and is the bias of neuron is the bias of neuron of layer of layer . In this document we use the superfix. In this document we use the superfixll bbll
ii ii ll

 not for exponentiation but for indexing the layer a variable belongs to. not for exponentiation but for indexing the layer a variable belongs to.this thing herethis thing here(())

The last factor The last factor of these formulas shows us that in order to compute the weight and of these formulas shows us that in order to compute the weight and
∂C∂C

∂a∂all
ii

(1)(1)

(2)(2)

http://neuralnetworksanddeeplearning.com/chap2.html#warm_up_a_fast_matrix-based_approach_to_computing_the_output_from_a_neural_network

bias gradients we will also need to calculate the gradient with respect to the activations.bias gradients we will also need to calculate the gradient with respect to the activations.
For the last layer of the network it can be calculated directly using the derivative of theFor the last layer of the network it can be calculated directly using the derivative of the
cost function, but for the other layers it is expanded as follows:cost function, but for the other layers it is expanded as follows:

== ⋅⋅ ⋅⋅
∂C∂C

∂a∂allii
∑∑

kk

∂z∂z

∂a∂a

l+1l+1

kk

ll
ii

∂a∂a

∂z∂z

l+1l+1

kk

l+1l+1

kk

∂C∂C

∂a∂al+1l+1

kk

Where the sum is over all Where the sum is over all neurons of layer neurons of layer ..kk ll++ 11

This formula is very similar to This formula is very similar to and and , with the last two factors also being present in, with the last two factors also being present in (1)(1) (2)(2)
the others. This hints at the fact that we can reuse some of the calculations whenthe others. This hints at the fact that we can reuse some of the calculations when
computing these formulas later.computing these formulas later.

The last factor The last factor will need to be expanded again if layer will need to be expanded again if layer is not yet the last layer, is not yet the last layer,
∂C∂C

∂a∂allkk
ll++ 11

and so on. This makes evident how calculating the gradients involves starting with the lastand so on. This makes evident how calculating the gradients involves starting with the last
layer, and then backpropagating through the network: the gradients of each layer dependlayer, and then backpropagating through the network: the gradients of each layer depend
on how that layer's activations affect the following layers.on how that layer's activations affect the following layers.

3. 3. Calculating the derivativesCalculating the derivatives
We can now move on to calculating the derivatives present in the chain rule expressionsWe can now move on to calculating the derivatives present in the chain rule expressions
above, so that we can turn them into something we can actually use.above, so that we can turn them into something we can actually use.

The weighted input for each neuron is calculated in the following way:The weighted input for each neuron is calculated in the following way:

zz == ww ⋅⋅ aa ++ bbll
ii

∑∑

jj

ll
ijij

l-1l-1

jj
ll
ii

The sum is over all The sum is over all neurons of the previous layer neurons of the previous layer . The first layer for which the. The first layer for which the jj ll -- 11

weighted input is calculated comes after the input layer, so that we always have a layerweighted input is calculated comes after the input layer, so that we always have a layer
. We will need the partial derivatives of . We will need the partial derivatives of with respect to each of its inputs: with respect to each of its inputs:ll -- 11 zz

== aa
∂z∂z

∂w∂w

ll
ii

ll
ijij

l-1l-1

jj == 11

∂z∂z

∂b∂b

ll
ii

ll
ii

== ww
∂z∂z

∂a∂a

ll
ii

l-1l-1

jj

ll
ijij

We will also need the derivatives involving the cost function and the activation functions.We will also need the derivatives involving the cost function and the activation functions.
Different layers can have different activation functions, which is the case for our network:Different layers can have different activation functions, which is the case for our network:
our last layer has a softmax activation function, while the previous layers all have aour last layer has a softmax activation function, while the previous layers all have a
sigmoid activation function. We will deal with these and the cost function later in thissigmoid activation function. We will deal with these and the cost function later in this
document.document.

(3)(3)

We can now replace the weighted input derivatives in We can now replace the weighted input derivatives in , , , and , and with the results we with the results we (1)(1) (2)(2) (3)(3)
just calculated:just calculated:

== ⋅⋅ ⋅⋅
∂C∂C

∂w∂wll
ijij

∂z∂z

∂w∂w

ll
ii

ll
ijij

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == aa ⋅⋅ ⋅⋅

∂C∂C

∂w∂wll
ijij

l-1l-1

jj

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii

== ⋅⋅ ⋅⋅
∂C∂C

∂b∂bllii

∂z∂z

∂b∂b

ll
ii

ll
ii

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == 11 ⋅⋅ ⋅⋅

∂C∂C

∂b∂bllii

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii

== ⋅⋅ ⋅⋅
∂C∂C

∂a∂allii
∑∑

kk

∂z∂z

∂a∂a

l+1l+1

kk

ll
ii

∂a∂a

∂z∂z

l+1l+1

kk

l+1l+1

kk

∂C∂C

∂a∂al+1l+1

kk

⇒⇒ == ww ⋅⋅ ⋅⋅
∂C∂C

∂a∂allii
∑∑

kk

l+1l+1

kiki

∂a∂a

∂z∂z

l+1l+1

kk

l+1l+1

kk

∂C∂C

∂a∂al+1l+1

kk

4. 4. Backpropagating the last layerBackpropagating the last layer
We now need to calculate the derivatives for the cost and activation functions used in ourWe now need to calculate the derivatives for the cost and activation functions used in our
neural network. We will start by dealing with the last layer, where we are using a softmaxneural network. We will start by dealing with the last layer, where we are using a softmax
activation followed by the cross entropy cost. This cost is calculated in the following way:activation followed by the cross entropy cost. This cost is calculated in the following way:

yy
11

nn
∑∑

nn

∑∑

ii

ii lnln
11

aaii

Where the first sum is over all Where the first sum is over all training samples, the second sum is over all training samples, the second sum is over all neurons in neurons in nn ii

the last layer, the last layer, is the ground truth activation for neuron is the ground truth activation for neuron , and , and is that neuron's actual is that neuron's actual yyii ii aaii
activation.activation.

However, the function we derive for the cost is the loss function, which calculates the costHowever, the function we derive for the cost is the loss function, which calculates the cost
for a single sample:for a single sample:

CC == yy∑∑

ii
ii lnln

11

aaii

There is a clever simplification for calculating the derivatives of the last layer. When itThere is a clever simplification for calculating the derivatives of the last layer. When it
applies a softmax activation followed by the cross entropy loss, as described on page 3 ofapplies a softmax activation followed by the cross entropy loss, as described on page 3 of
https://www.ics.uci.edu/~pjsadows/notes.pdfhttps://www.ics.uci.edu/~pjsadows/notes.pdf, we end up with the formula:, we end up with the formula:

(4)(4)

(5)(5)

(6)(6)

https://www.ics.uci.edu/~pjsadows/notes.pdf

== aa -- yy
∂C∂C

∂z∂zii
ii ii

Where Where is the ground truth activation for neuron is the ground truth activation for neuron , and , and is its actual activation. is its actual activation.yyii ii aaii
This formula replaces the last two factors of This formula replaces the last two factors of , , , and , and ::(1)(1) (2)(2) (3)(3)

⋅⋅ == == aa -- yy
∂a∂a

∂z∂z

ii

ii

∂C∂C

∂a∂aii

∂C∂C

∂z∂zii
ii ii

Formulas Formulas and and then become: then become:(4)(4) (5)(5)

== aa ⋅⋅ ⋅⋅
∂C∂C

∂w∂wll
ijij

l-1l-1
jj

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == aa ⋅⋅ aa -- yy

∂C∂C

∂w∂wll
ijij

l-1l-1
jj

ll
ii ii

== 11 ⋅⋅ ⋅⋅
∂C∂C

∂b∂bllii

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == aa -- yy

∂C∂C

∂b∂bllii

ll
ii ii

There is no need to calculate There is no need to calculate for the last layer, as the formulas above stand on their for the last layer, as the formulas above stand on their (6)(6)
own.own.
With a little analysis, we can convert them into vectorized expressions:With a little analysis, we can convert them into vectorized expressions:

== aa ⋅⋅ aa -- yy
∂C∂C

∂w∂wll
ijij

l-1l-1
jj

ll
ii ii ⇒⇒ == aa -- yy ⋅⋅ aa

∂C∂C

∂w∂wll
ll l-1l-1 TT

== aa -- yy
∂C∂C

∂b∂bllii

ll
ii ii ⇒⇒ == aa -- yy

∂C∂C

∂b∂bll
ll

Note that all vectors are assumed to be column vectors, meaning the same as a matrixNote that all vectors are assumed to be column vectors, meaning the same as a matrix
with just one column. Subtraction is element-wise, and with just one column. Subtraction is element-wise, and represents matrix multiplication. represents matrix multiplication.⋅⋅

5. 5. Backpropagating the remaining layersBackpropagating the remaining layers

The remaining layers of our neural network apply a sigmoid activation to the weightedThe remaining layers of our neural network apply a sigmoid activation to the weighted
inputs:inputs:

(7)(7)

(8)(8)

(9)(9)

𝜎𝜎 zz ==((ii))
11

11 ++ ee
-z-zii

And thus the derivative of the activations becomes:And thus the derivative of the activations becomes:

== 𝜎'𝜎' aa == 𝜎𝜎 aa ⋅⋅ 11-- 𝜎𝜎 aa
∂a∂a

∂z∂z

ii

ii

((ii)) ((ii)) ((((ii))))

We will use the same expression We will use the same expression to denote both the scalar and the vectorized version to denote both the scalar and the vectorized version 𝜎'𝜎'

of the sigmoid's derivative. The version being used can be inferred from context: if we areof the sigmoid's derivative. The version being used can be inferred from context: if we are
passing in a vector, we are using the vectorized version:passing in a vector, we are using the vectorized version:

𝜎'𝜎' aa == 𝜎𝜎 aa ⊙⊙ 11-- 𝜎𝜎 aa(()) (()) (((())))

Where Where represents the sigmoid function applied elementwise to vector represents the sigmoid function applied elementwise to vector , , 𝜎𝜎 aa(()) aa ⊙⊙

represents the hadamard (element-wise) product, and the subtraction operation is alsorepresents the hadamard (element-wise) product, and the subtraction operation is also
applied element-wise.applied element-wise.

Formulas Formulas and and then become: then become:(4)(4) (5)(5)

== aa ⋅⋅ ⋅⋅
∂C∂C

∂w∂wll
ijij

l-1l-1
jj

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == aa ⋅⋅ 𝜎'𝜎' aa ⋅⋅

∂C∂C

∂w∂wll
ijij

l-1l-1
jj

ll
ii

∂C∂C

∂a∂allii

== 11 ⋅⋅ ⋅⋅
∂C∂C

∂b∂bllii

∂a∂a

∂z∂z

ll
ii

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == 11 ⋅⋅ 𝜎'𝜎' aa ⋅⋅

∂C∂C

∂b∂bllii

ll
ii

∂C∂C

∂a∂allii

We can rewrite these as vectorized expressions:We can rewrite these as vectorized expressions:

== aa ⋅⋅ 𝜎'𝜎' aa ⋅⋅
∂C∂C

∂w∂wll
ijij

l-1l-1
jj

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == 𝜎'𝜎' aa ⊙⊙ ⋅⋅ aa

∂C∂C

∂w∂wll
ll ∂C∂C

∂a∂all
l-1l-1 TT

== 11 ⋅⋅ 𝜎'𝜎' aa ⋅⋅
∂C∂C

∂b∂bllii

ll
ii

∂C∂C

∂a∂allii
⇒⇒ == 𝜎'𝜎' aa ⊙⊙

∂C∂C

∂b∂bll
ll ∂C∂C

∂a∂all

Where all vectors are assumed to be column vectors.Where all vectors are assumed to be column vectors.

(10)(10)

(11)(11)

Note that we still have to specify Note that we still have to specify , which depends on the kind of layer that comes after, which depends on the kind of layer that comes after
∂C∂C

∂a∂allii
layer layer ..ll

If the next layer is not yet the last, and has a sigmoid activation (as all non-final layers inIf the next layer is not yet the last, and has a sigmoid activation (as all non-final layers in
our network), formula our network), formula will become: will become:(6)(6)

== ww ⋅⋅ ⋅⋅
∂C∂C

∂a∂allii
∑∑

kk

l+1l+1

kiki

∂a∂a

∂z∂z

l+1l+1

kk

l+1l+1

kk

∂C∂C

∂a∂al+1l+1

kk

⇒⇒ == ww ⋅⋅ 𝜎'𝜎' aa ⋅⋅
∂C∂C

∂a∂allii
∑∑

kk

l+1l+1

kiki
l+1l+1

kk

∂C∂C

∂a∂al+1l+1

kk

Which can be vectorized into the form:Which can be vectorized into the form:

== ww ⋅⋅ 𝜎'𝜎' aa ⊙⊙
∂C∂C

∂a∂all
l+1l+1

TT l+1l+1
∂C∂C

∂a∂al+1l+1

If layer If layer is the last layer, however, two things are different: we have a softmax is the last layer, however, two things are different: we have a softmax ll++ 11

activation function, and we can calculate the derivative of the cost directly. Since weactivation function, and we can calculate the derivative of the cost directly. Since we
already calculated an expression already calculated an expression that combines the two missing derivatives, we just that combines the two missing derivatives, we just (7)(7)
need to insert it into need to insert it into ::(6)(6)

== ww ⋅⋅ ⋅⋅
∂C∂C

∂a∂allii
∑∑

kk

l+1l+1

kiki

∂a∂a

∂z∂z

l+1l+1

kk

l+1l+1

kk

∂C∂C

∂a∂al+1l+1

kk

⇒⇒ == ww ⋅⋅ aa -- yy
∂C∂C

∂a∂allii
∑∑

kk

l+1l+1

kiki
l+1l+1

kk kk

We can also vectorize this expression:We can also vectorize this expression:

== ww ⋅⋅ aa -- yy
∂C∂C

∂a∂all
l+1l+1

TT l+1l+1

Where the subtraction applies element-wise, Where the subtraction applies element-wise, represents matrix multiplication, and represents matrix multiplication, and ⋅⋅

vectors are 1-column matrices by default.vectors are 1-column matrices by default.

6. 6. In practiceIn practice

When it comes to implementing backpropagation in code, the formulas to apply are theWhen it comes to implementing backpropagation in code, the formulas to apply are the
final vectorized expressions: final vectorized expressions: , , , , , , , , , and , and ..(8)(8) (9)(9) (10)(10) (11)(11) (12)(12) (13)(13)

Here is a rough overview of the steps that need to be taken:Here is a rough overview of the steps that need to be taken:

(12)(12)

(13)(13)

1. 1. Feedforward a sample through the network, storing activations of each layer alongFeedforward a sample through the network, storing activations of each layer along
the waythe way

2. 2. Calculate cost and store for reference (since we are not training in batches, we canCalculate cost and store for reference (since we are not training in batches, we can
track the accuracy of the model as we train by logging how many of the last track the accuracy of the model as we train by logging how many of the last xx
samples were guessed correctly. The global accuracy can be logged every epoch)samples were guessed correctly. The global accuracy can be logged every epoch)

3. 3. Calculate gradient for weights & biases of last layerCalculate gradient for weights & biases of last layer
4. 4. Calculate gradient for activations of the previous layerCalculate gradient for activations of the previous layer
5. 5. Use the activations gradient to calculate weights & biases gradientUse the activations gradient to calculate weights & biases gradient
6. 6. Repeat until input layer is reachedRepeat until input layer is reached
7. 7. Update weights & biases by subtracting the gradient multiplied by a small learningUpdate weights & biases by subtracting the gradient multiplied by a small learning

raterate
8. 8. Go back to 1.Go back to 1.

