Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • Alexandre.Meyer/m1if37-animation
  • Alexandre.Meyer/m2-apprentissage-profond-image
  • Alexandre.Meyer/m2-animation
  • Alexandre.Meyer/hugo-web-minimal
  • Alexandre.Meyer/lifami
  • Alexandre.Meyer/lifapcd
  • Alexandre.Meyer/www
  • Alexandre.Meyer/lifstage
8 results
Show changes
Showing
with 5484 additions and 0 deletions
/*
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Collision/b2Collision.h"
#include "Box2D/Collision/Shapes/b2CircleShape.h"
#include "Box2D/Collision/Shapes/b2PolygonShape.h"
void b2CollideCircles(
b2Manifold* manifold,
const b2CircleShape* circleA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)
{
manifold->pointCount = 0;
b2Vec2 pA = b2Mul(xfA, circleA->m_p);
b2Vec2 pB = b2Mul(xfB, circleB->m_p);
b2Vec2 d = pB - pA;
float32 distSqr = b2Dot(d, d);
float32 rA = circleA->m_radius, rB = circleB->m_radius;
float32 radius = rA + rB;
if (distSqr > radius * radius)
{
return;
}
manifold->type = b2Manifold::e_circles;
manifold->localPoint = circleA->m_p;
manifold->localNormal.SetZero();
manifold->pointCount = 1;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
void b2CollidePolygonAndCircle(
b2Manifold* manifold,
const b2PolygonShape* polygonA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)
{
manifold->pointCount = 0;
// Compute circle position in the frame of the polygon.
b2Vec2 c = b2Mul(xfB, circleB->m_p);
b2Vec2 cLocal = b2MulT(xfA, c);
// Find the min separating edge.
int32 normalIndex = 0;
float32 separation = -b2_maxFloat;
float32 radius = polygonA->m_radius + circleB->m_radius;
int32 vertexCount = polygonA->m_count;
const b2Vec2* vertices = polygonA->m_vertices;
const b2Vec2* normals = polygonA->m_normals;
for (int32 i = 0; i < vertexCount; ++i)
{
float32 s = b2Dot(normals[i], cLocal - vertices[i]);
if (s > radius)
{
// Early out.
return;
}
if (s > separation)
{
separation = s;
normalIndex = i;
}
}
// Vertices that subtend the incident face.
int32 vertIndex1 = normalIndex;
int32 vertIndex2 = vertIndex1 + 1 < vertexCount ? vertIndex1 + 1 : 0;
b2Vec2 v1 = vertices[vertIndex1];
b2Vec2 v2 = vertices[vertIndex2];
// If the center is inside the polygon ...
if (separation < b2_epsilon)
{
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = normals[normalIndex];
manifold->localPoint = 0.5f * (v1 + v2);
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
return;
}
// Compute barycentric coordinates
float32 u1 = b2Dot(cLocal - v1, v2 - v1);
float32 u2 = b2Dot(cLocal - v2, v1 - v2);
if (u1 <= 0.0f)
{
if (b2DistanceSquared(cLocal, v1) > radius * radius)
{
return;
}
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = cLocal - v1;
manifold->localNormal.Normalize();
manifold->localPoint = v1;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
else if (u2 <= 0.0f)
{
if (b2DistanceSquared(cLocal, v2) > radius * radius)
{
return;
}
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = cLocal - v2;
manifold->localNormal.Normalize();
manifold->localPoint = v2;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
else
{
b2Vec2 faceCenter = 0.5f * (v1 + v2);
float32 s = b2Dot(cLocal - faceCenter, normals[vertIndex1]);
if (s > radius)
{
return;
}
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = normals[vertIndex1];
manifold->localPoint = faceCenter;
manifold->points[0].localPoint = circleB->m_p;
manifold->points[0].id.key = 0;
}
}
/*
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Collision/b2Collision.h"
#include "Box2D/Collision/Shapes/b2CircleShape.h"
#include "Box2D/Collision/Shapes/b2EdgeShape.h"
#include "Box2D/Collision/Shapes/b2PolygonShape.h"
// Compute contact points for edge versus circle.
// This accounts for edge connectivity.
void b2CollideEdgeAndCircle(b2Manifold* manifold,
const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB)
{
manifold->pointCount = 0;
// Compute circle in frame of edge
b2Vec2 Q = b2MulT(xfA, b2Mul(xfB, circleB->m_p));
b2Vec2 A = edgeA->m_vertex1, B = edgeA->m_vertex2;
b2Vec2 e = B - A;
// Barycentric coordinates
float32 u = b2Dot(e, B - Q);
float32 v = b2Dot(e, Q - A);
float32 radius = edgeA->m_radius + circleB->m_radius;
b2ContactFeature cf;
cf.indexB = 0;
cf.typeB = b2ContactFeature::e_vertex;
// Region A
if (v <= 0.0f)
{
b2Vec2 P = A;
b2Vec2 d = Q - P;
float32 dd = b2Dot(d, d);
if (dd > radius * radius)
{
return;
}
// Is there an edge connected to A?
if (edgeA->m_hasVertex0)
{
b2Vec2 A1 = edgeA->m_vertex0;
b2Vec2 B1 = A;
b2Vec2 e1 = B1 - A1;
float32 u1 = b2Dot(e1, B1 - Q);
// Is the circle in Region AB of the previous edge?
if (u1 > 0.0f)
{
return;
}
}
cf.indexA = 0;
cf.typeA = b2ContactFeature::e_vertex;
manifold->pointCount = 1;
manifold->type = b2Manifold::e_circles;
manifold->localNormal.SetZero();
manifold->localPoint = P;
manifold->points[0].id.key = 0;
manifold->points[0].id.cf = cf;
manifold->points[0].localPoint = circleB->m_p;
return;
}
// Region B
if (u <= 0.0f)
{
b2Vec2 P = B;
b2Vec2 d = Q - P;
float32 dd = b2Dot(d, d);
if (dd > radius * radius)
{
return;
}
// Is there an edge connected to B?
if (edgeA->m_hasVertex3)
{
b2Vec2 B2 = edgeA->m_vertex3;
b2Vec2 A2 = B;
b2Vec2 e2 = B2 - A2;
float32 v2 = b2Dot(e2, Q - A2);
// Is the circle in Region AB of the next edge?
if (v2 > 0.0f)
{
return;
}
}
cf.indexA = 1;
cf.typeA = b2ContactFeature::e_vertex;
manifold->pointCount = 1;
manifold->type = b2Manifold::e_circles;
manifold->localNormal.SetZero();
manifold->localPoint = P;
manifold->points[0].id.key = 0;
manifold->points[0].id.cf = cf;
manifold->points[0].localPoint = circleB->m_p;
return;
}
// Region AB
float32 den = b2Dot(e, e);
b2Assert(den > 0.0f);
b2Vec2 P = (1.0f / den) * (u * A + v * B);
b2Vec2 d = Q - P;
float32 dd = b2Dot(d, d);
if (dd > radius * radius)
{
return;
}
b2Vec2 n(-e.y, e.x);
if (b2Dot(n, Q - A) < 0.0f)
{
n.Set(-n.x, -n.y);
}
n.Normalize();
cf.indexA = 0;
cf.typeA = b2ContactFeature::e_face;
manifold->pointCount = 1;
manifold->type = b2Manifold::e_faceA;
manifold->localNormal = n;
manifold->localPoint = A;
manifold->points[0].id.key = 0;
manifold->points[0].id.cf = cf;
manifold->points[0].localPoint = circleB->m_p;
}
// This structure is used to keep track of the best separating axis.
struct b2EPAxis
{
enum Type
{
e_unknown,
e_edgeA,
e_edgeB
};
Type type;
int32 index;
float32 separation;
};
// This holds polygon B expressed in frame A.
struct b2TempPolygon
{
b2Vec2 vertices[b2_maxPolygonVertices];
b2Vec2 normals[b2_maxPolygonVertices];
int32 count;
};
// Reference face used for clipping
struct b2ReferenceFace
{
int32 i1, i2;
b2Vec2 v1, v2;
b2Vec2 normal;
b2Vec2 sideNormal1;
float32 sideOffset1;
b2Vec2 sideNormal2;
float32 sideOffset2;
};
// This class collides and edge and a polygon, taking into account edge adjacency.
struct b2EPCollider
{
void Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2PolygonShape* polygonB, const b2Transform& xfB);
b2EPAxis ComputeEdgeSeparation();
b2EPAxis ComputePolygonSeparation();
enum VertexType
{
e_isolated,
e_concave,
e_convex
};
b2TempPolygon m_polygonB;
b2Transform m_xf;
b2Vec2 m_centroidB;
b2Vec2 m_v0, m_v1, m_v2, m_v3;
b2Vec2 m_normal0, m_normal1, m_normal2;
b2Vec2 m_normal;
VertexType m_type1, m_type2;
b2Vec2 m_lowerLimit, m_upperLimit;
float32 m_radius;
bool m_front;
};
// Algorithm:
// 1. Classify v1 and v2
// 2. Classify polygon centroid as front or back
// 3. Flip normal if necessary
// 4. Initialize normal range to [-pi, pi] about face normal
// 5. Adjust normal range according to adjacent edges
// 6. Visit each separating axes, only accept axes within the range
// 7. Return if _any_ axis indicates separation
// 8. Clip
void b2EPCollider::Collide(b2Manifold* manifold, const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2PolygonShape* polygonB, const b2Transform& xfB)
{
m_xf = b2MulT(xfA, xfB);
m_centroidB = b2Mul(m_xf, polygonB->m_centroid);
m_v0 = edgeA->m_vertex0;
m_v1 = edgeA->m_vertex1;
m_v2 = edgeA->m_vertex2;
m_v3 = edgeA->m_vertex3;
bool hasVertex0 = edgeA->m_hasVertex0;
bool hasVertex3 = edgeA->m_hasVertex3;
b2Vec2 edge1 = m_v2 - m_v1;
edge1.Normalize();
m_normal1.Set(edge1.y, -edge1.x);
float32 offset1 = b2Dot(m_normal1, m_centroidB - m_v1);
float32 offset0 = 0.0f, offset2 = 0.0f;
bool convex1 = false, convex2 = false;
// Is there a preceding edge?
if (hasVertex0)
{
b2Vec2 edge0 = m_v1 - m_v0;
edge0.Normalize();
m_normal0.Set(edge0.y, -edge0.x);
convex1 = b2Cross(edge0, edge1) >= 0.0f;
offset0 = b2Dot(m_normal0, m_centroidB - m_v0);
}
// Is there a following edge?
if (hasVertex3)
{
b2Vec2 edge2 = m_v3 - m_v2;
edge2.Normalize();
m_normal2.Set(edge2.y, -edge2.x);
convex2 = b2Cross(edge1, edge2) > 0.0f;
offset2 = b2Dot(m_normal2, m_centroidB - m_v2);
}
// Determine front or back collision. Determine collision normal limits.
if (hasVertex0 && hasVertex3)
{
if (convex1 && convex2)
{
m_front = offset0 >= 0.0f || offset1 >= 0.0f || offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal0;
m_upperLimit = m_normal2;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = -m_normal1;
}
}
else if (convex1)
{
m_front = offset0 >= 0.0f || (offset1 >= 0.0f && offset2 >= 0.0f);
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal0;
m_upperLimit = m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal2;
m_upperLimit = -m_normal1;
}
}
else if (convex2)
{
m_front = offset2 >= 0.0f || (offset0 >= 0.0f && offset1 >= 0.0f);
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = m_normal2;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = -m_normal0;
}
}
else
{
m_front = offset0 >= 0.0f && offset1 >= 0.0f && offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal2;
m_upperLimit = -m_normal0;
}
}
}
else if (hasVertex0)
{
if (convex1)
{
m_front = offset0 >= 0.0f || offset1 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal0;
m_upperLimit = -m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = -m_normal1;
}
}
else
{
m_front = offset0 >= 0.0f && offset1 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = -m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = -m_normal0;
}
}
}
else if (hasVertex3)
{
if (convex2)
{
m_front = offset1 >= 0.0f || offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = m_normal2;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = m_normal1;
}
}
else
{
m_front = offset1 >= 0.0f && offset2 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = -m_normal2;
m_upperLimit = m_normal1;
}
}
}
else
{
m_front = offset1 >= 0.0f;
if (m_front)
{
m_normal = m_normal1;
m_lowerLimit = -m_normal1;
m_upperLimit = -m_normal1;
}
else
{
m_normal = -m_normal1;
m_lowerLimit = m_normal1;
m_upperLimit = m_normal1;
}
}
// Get polygonB in frameA
m_polygonB.count = polygonB->m_count;
for (int32 i = 0; i < polygonB->m_count; ++i)
{
m_polygonB.vertices[i] = b2Mul(m_xf, polygonB->m_vertices[i]);
m_polygonB.normals[i] = b2Mul(m_xf.q, polygonB->m_normals[i]);
}
m_radius = polygonB->m_radius + edgeA->m_radius;
manifold->pointCount = 0;
b2EPAxis edgeAxis = ComputeEdgeSeparation();
// If no valid normal can be found than this edge should not collide.
if (edgeAxis.type == b2EPAxis::e_unknown)
{
return;
}
if (edgeAxis.separation > m_radius)
{
return;
}
b2EPAxis polygonAxis = ComputePolygonSeparation();
if (polygonAxis.type != b2EPAxis::e_unknown && polygonAxis.separation > m_radius)
{
return;
}
// Use hysteresis for jitter reduction.
const float32 k_relativeTol = 0.98f;
const float32 k_absoluteTol = 0.001f;
b2EPAxis primaryAxis;
if (polygonAxis.type == b2EPAxis::e_unknown)
{
primaryAxis = edgeAxis;
}
else if (polygonAxis.separation > k_relativeTol * edgeAxis.separation + k_absoluteTol)
{
primaryAxis = polygonAxis;
}
else
{
primaryAxis = edgeAxis;
}
b2ClipVertex ie[2];
b2ReferenceFace rf;
if (primaryAxis.type == b2EPAxis::e_edgeA)
{
manifold->type = b2Manifold::e_faceA;
// Search for the polygon normal that is most anti-parallel to the edge normal.
int32 bestIndex = 0;
float32 bestValue = b2Dot(m_normal, m_polygonB.normals[0]);
for (int32 i = 1; i < m_polygonB.count; ++i)
{
float32 value = b2Dot(m_normal, m_polygonB.normals[i]);
if (value < bestValue)
{
bestValue = value;
bestIndex = i;
}
}
int32 i1 = bestIndex;
int32 i2 = i1 + 1 < m_polygonB.count ? i1 + 1 : 0;
ie[0].v = m_polygonB.vertices[i1];
ie[0].id.cf.indexA = 0;
ie[0].id.cf.indexB = static_cast<uint8>(i1);
ie[0].id.cf.typeA = b2ContactFeature::e_face;
ie[0].id.cf.typeB = b2ContactFeature::e_vertex;
ie[1].v = m_polygonB.vertices[i2];
ie[1].id.cf.indexA = 0;
ie[1].id.cf.indexB = static_cast<uint8>(i2);
ie[1].id.cf.typeA = b2ContactFeature::e_face;
ie[1].id.cf.typeB = b2ContactFeature::e_vertex;
if (m_front)
{
rf.i1 = 0;
rf.i2 = 1;
rf.v1 = m_v1;
rf.v2 = m_v2;
rf.normal = m_normal1;
}
else
{
rf.i1 = 1;
rf.i2 = 0;
rf.v1 = m_v2;
rf.v2 = m_v1;
rf.normal = -m_normal1;
}
}
else
{
manifold->type = b2Manifold::e_faceB;
ie[0].v = m_v1;
ie[0].id.cf.indexA = 0;
ie[0].id.cf.indexB = static_cast<uint8>(primaryAxis.index);
ie[0].id.cf.typeA = b2ContactFeature::e_vertex;
ie[0].id.cf.typeB = b2ContactFeature::e_face;
ie[1].v = m_v2;
ie[1].id.cf.indexA = 0;
ie[1].id.cf.indexB = static_cast<uint8>(primaryAxis.index);
ie[1].id.cf.typeA = b2ContactFeature::e_vertex;
ie[1].id.cf.typeB = b2ContactFeature::e_face;
rf.i1 = primaryAxis.index;
rf.i2 = rf.i1 + 1 < m_polygonB.count ? rf.i1 + 1 : 0;
rf.v1 = m_polygonB.vertices[rf.i1];
rf.v2 = m_polygonB.vertices[rf.i2];
rf.normal = m_polygonB.normals[rf.i1];
}
rf.sideNormal1.Set(rf.normal.y, -rf.normal.x);
rf.sideNormal2 = -rf.sideNormal1;
rf.sideOffset1 = b2Dot(rf.sideNormal1, rf.v1);
rf.sideOffset2 = b2Dot(rf.sideNormal2, rf.v2);
// Clip incident edge against extruded edge1 side edges.
b2ClipVertex clipPoints1[2];
b2ClipVertex clipPoints2[2];
int32 np;
// Clip to box side 1
np = b2ClipSegmentToLine(clipPoints1, ie, rf.sideNormal1, rf.sideOffset1, rf.i1);
if (np < b2_maxManifoldPoints)
{
return;
}
// Clip to negative box side 1
np = b2ClipSegmentToLine(clipPoints2, clipPoints1, rf.sideNormal2, rf.sideOffset2, rf.i2);
if (np < b2_maxManifoldPoints)
{
return;
}
// Now clipPoints2 contains the clipped points.
if (primaryAxis.type == b2EPAxis::e_edgeA)
{
manifold->localNormal = rf.normal;
manifold->localPoint = rf.v1;
}
else
{
manifold->localNormal = polygonB->m_normals[rf.i1];
manifold->localPoint = polygonB->m_vertices[rf.i1];
}
int32 pointCount = 0;
for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
{
float32 separation;
separation = b2Dot(rf.normal, clipPoints2[i].v - rf.v1);
if (separation <= m_radius)
{
b2ManifoldPoint* cp = manifold->points + pointCount;
if (primaryAxis.type == b2EPAxis::e_edgeA)
{
cp->localPoint = b2MulT(m_xf, clipPoints2[i].v);
cp->id = clipPoints2[i].id;
}
else
{
cp->localPoint = clipPoints2[i].v;
cp->id.cf.typeA = clipPoints2[i].id.cf.typeB;
cp->id.cf.typeB = clipPoints2[i].id.cf.typeA;
cp->id.cf.indexA = clipPoints2[i].id.cf.indexB;
cp->id.cf.indexB = clipPoints2[i].id.cf.indexA;
}
++pointCount;
}
}
manifold->pointCount = pointCount;
}
b2EPAxis b2EPCollider::ComputeEdgeSeparation()
{
b2EPAxis axis;
axis.type = b2EPAxis::e_edgeA;
axis.index = m_front ? 0 : 1;
axis.separation = FLT_MAX;
for (int32 i = 0; i < m_polygonB.count; ++i)
{
float32 s = b2Dot(m_normal, m_polygonB.vertices[i] - m_v1);
if (s < axis.separation)
{
axis.separation = s;
}
}
return axis;
}
b2EPAxis b2EPCollider::ComputePolygonSeparation()
{
b2EPAxis axis;
axis.type = b2EPAxis::e_unknown;
axis.index = -1;
axis.separation = -FLT_MAX;
b2Vec2 perp(-m_normal.y, m_normal.x);
for (int32 i = 0; i < m_polygonB.count; ++i)
{
b2Vec2 n = -m_polygonB.normals[i];
float32 s1 = b2Dot(n, m_polygonB.vertices[i] - m_v1);
float32 s2 = b2Dot(n, m_polygonB.vertices[i] - m_v2);
float32 s = b2Min(s1, s2);
if (s > m_radius)
{
// No collision
axis.type = b2EPAxis::e_edgeB;
axis.index = i;
axis.separation = s;
return axis;
}
// Adjacency
if (b2Dot(n, perp) >= 0.0f)
{
if (b2Dot(n - m_upperLimit, m_normal) < -b2_angularSlop)
{
continue;
}
}
else
{
if (b2Dot(n - m_lowerLimit, m_normal) < -b2_angularSlop)
{
continue;
}
}
if (s > axis.separation)
{
axis.type = b2EPAxis::e_edgeB;
axis.index = i;
axis.separation = s;
}
}
return axis;
}
void b2CollideEdgeAndPolygon( b2Manifold* manifold,
const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2PolygonShape* polygonB, const b2Transform& xfB)
{
b2EPCollider collider;
collider.Collide(manifold, edgeA, xfA, polygonB, xfB);
}
/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Collision/b2Collision.h"
#include "Box2D/Collision/Shapes/b2PolygonShape.h"
// Find the max separation between poly1 and poly2 using edge normals from poly1.
static float32 b2FindMaxSeparation(int32* edgeIndex,
const b2PolygonShape* poly1, const b2Transform& xf1,
const b2PolygonShape* poly2, const b2Transform& xf2)
{
int32 count1 = poly1->m_count;
int32 count2 = poly2->m_count;
const b2Vec2* n1s = poly1->m_normals;
const b2Vec2* v1s = poly1->m_vertices;
const b2Vec2* v2s = poly2->m_vertices;
b2Transform xf = b2MulT(xf2, xf1);
int32 bestIndex = 0;
float32 maxSeparation = -b2_maxFloat;
for (int32 i = 0; i < count1; ++i)
{
// Get poly1 normal in frame2.
b2Vec2 n = b2Mul(xf.q, n1s[i]);
b2Vec2 v1 = b2Mul(xf, v1s[i]);
// Find deepest point for normal i.
float32 si = b2_maxFloat;
for (int32 j = 0; j < count2; ++j)
{
float32 sij = b2Dot(n, v2s[j] - v1);
if (sij < si)
{
si = sij;
}
}
if (si > maxSeparation)
{
maxSeparation = si;
bestIndex = i;
}
}
*edgeIndex = bestIndex;
return maxSeparation;
}
static void b2FindIncidentEdge(b2ClipVertex c[2],
const b2PolygonShape* poly1, const b2Transform& xf1, int32 edge1,
const b2PolygonShape* poly2, const b2Transform& xf2)
{
const b2Vec2* normals1 = poly1->m_normals;
int32 count2 = poly2->m_count;
const b2Vec2* vertices2 = poly2->m_vertices;
const b2Vec2* normals2 = poly2->m_normals;
b2Assert(0 <= edge1 && edge1 < poly1->m_count);
// Get the normal of the reference edge in poly2's frame.
b2Vec2 normal1 = b2MulT(xf2.q, b2Mul(xf1.q, normals1[edge1]));
// Find the incident edge on poly2.
int32 index = 0;
float32 minDot = b2_maxFloat;
for (int32 i = 0; i < count2; ++i)
{
float32 dot = b2Dot(normal1, normals2[i]);
if (dot < minDot)
{
minDot = dot;
index = i;
}
}
// Build the clip vertices for the incident edge.
int32 i1 = index;
int32 i2 = i1 + 1 < count2 ? i1 + 1 : 0;
c[0].v = b2Mul(xf2, vertices2[i1]);
c[0].id.cf.indexA = (uint8)edge1;
c[0].id.cf.indexB = (uint8)i1;
c[0].id.cf.typeA = b2ContactFeature::e_face;
c[0].id.cf.typeB = b2ContactFeature::e_vertex;
c[1].v = b2Mul(xf2, vertices2[i2]);
c[1].id.cf.indexA = (uint8)edge1;
c[1].id.cf.indexB = (uint8)i2;
c[1].id.cf.typeA = b2ContactFeature::e_face;
c[1].id.cf.typeB = b2ContactFeature::e_vertex;
}
// Find edge normal of max separation on A - return if separating axis is found
// Find edge normal of max separation on B - return if separation axis is found
// Choose reference edge as min(minA, minB)
// Find incident edge
// Clip
// The normal points from 1 to 2
void b2CollidePolygons(b2Manifold* manifold,
const b2PolygonShape* polyA, const b2Transform& xfA,
const b2PolygonShape* polyB, const b2Transform& xfB)
{
manifold->pointCount = 0;
float32 totalRadius = polyA->m_radius + polyB->m_radius;
int32 edgeA = 0;
float32 separationA = b2FindMaxSeparation(&edgeA, polyA, xfA, polyB, xfB);
if (separationA > totalRadius)
return;
int32 edgeB = 0;
float32 separationB = b2FindMaxSeparation(&edgeB, polyB, xfB, polyA, xfA);
if (separationB > totalRadius)
return;
const b2PolygonShape* poly1; // reference polygon
const b2PolygonShape* poly2; // incident polygon
b2Transform xf1, xf2;
int32 edge1; // reference edge
uint8 flip;
const float32 k_tol = 0.1f * b2_linearSlop;
if (separationB > separationA + k_tol)
{
poly1 = polyB;
poly2 = polyA;
xf1 = xfB;
xf2 = xfA;
edge1 = edgeB;
manifold->type = b2Manifold::e_faceB;
flip = 1;
}
else
{
poly1 = polyA;
poly2 = polyB;
xf1 = xfA;
xf2 = xfB;
edge1 = edgeA;
manifold->type = b2Manifold::e_faceA;
flip = 0;
}
b2ClipVertex incidentEdge[2];
b2FindIncidentEdge(incidentEdge, poly1, xf1, edge1, poly2, xf2);
int32 count1 = poly1->m_count;
const b2Vec2* vertices1 = poly1->m_vertices;
int32 iv1 = edge1;
int32 iv2 = edge1 + 1 < count1 ? edge1 + 1 : 0;
b2Vec2 v11 = vertices1[iv1];
b2Vec2 v12 = vertices1[iv2];
b2Vec2 localTangent = v12 - v11;
localTangent.Normalize();
b2Vec2 localNormal = b2Cross(localTangent, 1.0f);
b2Vec2 planePoint = 0.5f * (v11 + v12);
b2Vec2 tangent = b2Mul(xf1.q, localTangent);
b2Vec2 normal = b2Cross(tangent, 1.0f);
v11 = b2Mul(xf1, v11);
v12 = b2Mul(xf1, v12);
// Face offset.
float32 frontOffset = b2Dot(normal, v11);
// Side offsets, extended by polytope skin thickness.
float32 sideOffset1 = -b2Dot(tangent, v11) + totalRadius;
float32 sideOffset2 = b2Dot(tangent, v12) + totalRadius;
// Clip incident edge against extruded edge1 side edges.
b2ClipVertex clipPoints1[2];
b2ClipVertex clipPoints2[2];
int np;
// Clip to box side 1
np = b2ClipSegmentToLine(clipPoints1, incidentEdge, -tangent, sideOffset1, iv1);
if (np < 2)
return;
// Clip to negative box side 1
np = b2ClipSegmentToLine(clipPoints2, clipPoints1, tangent, sideOffset2, iv2);
if (np < 2)
{
return;
}
// Now clipPoints2 contains the clipped points.
manifold->localNormal = localNormal;
manifold->localPoint = planePoint;
int32 pointCount = 0;
for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
{
float32 separation = b2Dot(normal, clipPoints2[i].v) - frontOffset;
if (separation <= totalRadius)
{
b2ManifoldPoint* cp = manifold->points + pointCount;
cp->localPoint = b2MulT(xf2, clipPoints2[i].v);
cp->id = clipPoints2[i].id;
if (flip)
{
// Swap features
b2ContactFeature cf = cp->id.cf;
cp->id.cf.indexA = cf.indexB;
cp->id.cf.indexB = cf.indexA;
cp->id.cf.typeA = cf.typeB;
cp->id.cf.typeB = cf.typeA;
}
++pointCount;
}
}
manifold->pointCount = pointCount;
}
/*
* Copyright (c) 2007-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Collision/b2Collision.h"
#include "Box2D/Collision/b2Distance.h"
void b2WorldManifold::Initialize(const b2Manifold* manifold,
const b2Transform& xfA, float32 radiusA,
const b2Transform& xfB, float32 radiusB)
{
if (manifold->pointCount == 0)
{
return;
}
switch (manifold->type)
{
case b2Manifold::e_circles:
{
normal.Set(1.0f, 0.0f);
b2Vec2 pointA = b2Mul(xfA, manifold->localPoint);
b2Vec2 pointB = b2Mul(xfB, manifold->points[0].localPoint);
if (b2DistanceSquared(pointA, pointB) > b2_epsilon * b2_epsilon)
{
normal = pointB - pointA;
normal.Normalize();
}
b2Vec2 cA = pointA + radiusA * normal;
b2Vec2 cB = pointB - radiusB * normal;
points[0] = 0.5f * (cA + cB);
separations[0] = b2Dot(cB - cA, normal);
}
break;
case b2Manifold::e_faceA:
{
normal = b2Mul(xfA.q, manifold->localNormal);
b2Vec2 planePoint = b2Mul(xfA, manifold->localPoint);
for (int32 i = 0; i < manifold->pointCount; ++i)
{
b2Vec2 clipPoint = b2Mul(xfB, manifold->points[i].localPoint);
b2Vec2 cA = clipPoint + (radiusA - b2Dot(clipPoint - planePoint, normal)) * normal;
b2Vec2 cB = clipPoint - radiusB * normal;
points[i] = 0.5f * (cA + cB);
separations[i] = b2Dot(cB - cA, normal);
}
}
break;
case b2Manifold::e_faceB:
{
normal = b2Mul(xfB.q, manifold->localNormal);
b2Vec2 planePoint = b2Mul(xfB, manifold->localPoint);
for (int32 i = 0; i < manifold->pointCount; ++i)
{
b2Vec2 clipPoint = b2Mul(xfA, manifold->points[i].localPoint);
b2Vec2 cB = clipPoint + (radiusB - b2Dot(clipPoint - planePoint, normal)) * normal;
b2Vec2 cA = clipPoint - radiusA * normal;
points[i] = 0.5f * (cA + cB);
separations[i] = b2Dot(cA - cB, normal);
}
// Ensure normal points from A to B.
normal = -normal;
}
break;
}
}
void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
const b2Manifold* manifold1, const b2Manifold* manifold2)
{
for (int32 i = 0; i < b2_maxManifoldPoints; ++i)
{
state1[i] = b2_nullState;
state2[i] = b2_nullState;
}
// Detect persists and removes.
for (int32 i = 0; i < manifold1->pointCount; ++i)
{
b2ContactID id = manifold1->points[i].id;
state1[i] = b2_removeState;
for (int32 j = 0; j < manifold2->pointCount; ++j)
{
if (manifold2->points[j].id.key == id.key)
{
state1[i] = b2_persistState;
break;
}
}
}
// Detect persists and adds.
for (int32 i = 0; i < manifold2->pointCount; ++i)
{
b2ContactID id = manifold2->points[i].id;
state2[i] = b2_addState;
for (int32 j = 0; j < manifold1->pointCount; ++j)
{
if (manifold1->points[j].id.key == id.key)
{
state2[i] = b2_persistState;
break;
}
}
}
}
// From Real-time Collision Detection, p179.
bool b2AABB::RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const
{
float32 tmin = -b2_maxFloat;
float32 tmax = b2_maxFloat;
b2Vec2 p = input.p1;
b2Vec2 d = input.p2 - input.p1;
b2Vec2 absD = b2Abs(d);
b2Vec2 normal;
for (int32 i = 0; i < 2; ++i)
{
if (absD(i) < b2_epsilon)
{
// Parallel.
if (p(i) < lowerBound(i) || upperBound(i) < p(i))
{
return false;
}
}
else
{
float32 inv_d = 1.0f / d(i);
float32 t1 = (lowerBound(i) - p(i)) * inv_d;
float32 t2 = (upperBound(i) - p(i)) * inv_d;
// Sign of the normal vector.
float32 s = -1.0f;
if (t1 > t2)
{
b2Swap(t1, t2);
s = 1.0f;
}
// Push the min up
if (t1 > tmin)
{
normal.SetZero();
normal(i) = s;
tmin = t1;
}
// Pull the max down
tmax = b2Min(tmax, t2);
if (tmin > tmax)
{
return false;
}
}
}
// Does the ray start inside the box?
// Does the ray intersect beyond the max fraction?
if (tmin < 0.0f || input.maxFraction < tmin)
{
return false;
}
// Intersection.
output->fraction = tmin;
output->normal = normal;
return true;
}
// Sutherland-Hodgman clipping.
int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
const b2Vec2& normal, float32 offset, int32 vertexIndexA)
{
// Start with no output points
int32 numOut = 0;
// Calculate the distance of end points to the line
float32 distance0 = b2Dot(normal, vIn[0].v) - offset;
float32 distance1 = b2Dot(normal, vIn[1].v) - offset;
// If the points are behind the plane
if (distance0 <= 0.0f) vOut[numOut++] = vIn[0];
if (distance1 <= 0.0f) vOut[numOut++] = vIn[1];
// If the points are on different sides of the plane
if (distance0 * distance1 < 0.0f)
{
// Find intersection point of edge and plane
float32 interp = distance0 / (distance0 - distance1);
vOut[numOut].v = vIn[0].v + interp * (vIn[1].v - vIn[0].v);
// VertexA is hitting edgeB.
vOut[numOut].id.cf.indexA = static_cast<uint8>(vertexIndexA);
vOut[numOut].id.cf.indexB = vIn[0].id.cf.indexB;
vOut[numOut].id.cf.typeA = b2ContactFeature::e_vertex;
vOut[numOut].id.cf.typeB = b2ContactFeature::e_face;
++numOut;
}
return numOut;
}
bool b2TestOverlap( const b2Shape* shapeA, int32 indexA,
const b2Shape* shapeB, int32 indexB,
const b2Transform& xfA, const b2Transform& xfB)
{
b2DistanceInput input;
input.proxyA.Set(shapeA, indexA);
input.proxyB.Set(shapeB, indexB);
input.transformA = xfA;
input.transformB = xfB;
input.useRadii = true;
b2SimplexCache cache;
cache.count = 0;
b2DistanceOutput output;
b2Distance(&output, &cache, &input);
return output.distance < 10.0f * b2_epsilon;
}
/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_COLLISION_H
#define B2_COLLISION_H
#include "Box2D/Common/b2Math.h"
#include <limits.h>
/// @file
/// Structures and functions used for computing contact points, distance
/// queries, and TOI queries.
class b2Shape;
class b2CircleShape;
class b2EdgeShape;
class b2PolygonShape;
const uint8 b2_nullFeature = UCHAR_MAX;
/// The features that intersect to form the contact point
/// This must be 4 bytes or less.
struct b2ContactFeature
{
enum Type
{
e_vertex = 0,
e_face = 1
};
uint8 indexA; ///< Feature index on shapeA
uint8 indexB; ///< Feature index on shapeB
uint8 typeA; ///< The feature type on shapeA
uint8 typeB; ///< The feature type on shapeB
};
/// Contact ids to facilitate warm starting.
union b2ContactID
{
b2ContactFeature cf;
uint32 key; ///< Used to quickly compare contact ids.
};
/// A manifold point is a contact point belonging to a contact
/// manifold. It holds details related to the geometry and dynamics
/// of the contact points.
/// The local point usage depends on the manifold type:
/// -e_circles: the local center of circleB
/// -e_faceA: the local center of cirlceB or the clip point of polygonB
/// -e_faceB: the clip point of polygonA
/// This structure is stored across time steps, so we keep it small.
/// Note: the impulses are used for internal caching and may not
/// provide reliable contact forces, especially for high speed collisions.
struct b2ManifoldPoint
{
b2Vec2 localPoint; ///< usage depends on manifold type
float32 normalImpulse; ///< the non-penetration impulse
float32 tangentImpulse; ///< the friction impulse
b2ContactID id; ///< uniquely identifies a contact point between two shapes
};
/// A manifold for two touching convex shapes.
/// Box2D supports multiple types of contact:
/// - clip point versus plane with radius
/// - point versus point with radius (circles)
/// The local point usage depends on the manifold type:
/// -e_circles: the local center of circleA
/// -e_faceA: the center of faceA
/// -e_faceB: the center of faceB
/// Similarly the local normal usage:
/// -e_circles: not used
/// -e_faceA: the normal on polygonA
/// -e_faceB: the normal on polygonB
/// We store contacts in this way so that position correction can
/// account for movement, which is critical for continuous physics.
/// All contact scenarios must be expressed in one of these types.
/// This structure is stored across time steps, so we keep it small.
struct b2Manifold
{
enum Type
{
e_circles,
e_faceA,
e_faceB
};
b2ManifoldPoint points[b2_maxManifoldPoints]; ///< the points of contact
b2Vec2 localNormal; ///< not use for Type::e_points
b2Vec2 localPoint; ///< usage depends on manifold type
Type type;
int32 pointCount; ///< the number of manifold points
};
/// This is used to compute the current state of a contact manifold.
struct b2WorldManifold
{
/// Evaluate the manifold with supplied transforms. This assumes
/// modest motion from the original state. This does not change the
/// point count, impulses, etc. The radii must come from the shapes
/// that generated the manifold.
void Initialize(const b2Manifold* manifold,
const b2Transform& xfA, float32 radiusA,
const b2Transform& xfB, float32 radiusB);
b2Vec2 normal; ///< world vector pointing from A to B
b2Vec2 points[b2_maxManifoldPoints]; ///< world contact point (point of intersection)
float32 separations[b2_maxManifoldPoints]; ///< a negative value indicates overlap, in meters
};
/// This is used for determining the state of contact points.
enum b2PointState
{
b2_nullState, ///< point does not exist
b2_addState, ///< point was added in the update
b2_persistState, ///< point persisted across the update
b2_removeState ///< point was removed in the update
};
/// Compute the point states given two manifolds. The states pertain to the transition from manifold1
/// to manifold2. So state1 is either persist or remove while state2 is either add or persist.
void b2GetPointStates(b2PointState state1[b2_maxManifoldPoints], b2PointState state2[b2_maxManifoldPoints],
const b2Manifold* manifold1, const b2Manifold* manifold2);
/// Used for computing contact manifolds.
struct b2ClipVertex
{
b2Vec2 v;
b2ContactID id;
};
/// Ray-cast input data. The ray extends from p1 to p1 + maxFraction * (p2 - p1).
struct b2RayCastInput
{
b2Vec2 p1, p2;
float32 maxFraction;
};
/// Ray-cast output data. The ray hits at p1 + fraction * (p2 - p1), where p1 and p2
/// come from b2RayCastInput.
struct b2RayCastOutput
{
b2Vec2 normal;
float32 fraction;
};
/// An axis aligned bounding box.
struct b2AABB
{
/// Verify that the bounds are sorted.
bool IsValid() const;
/// Get the center of the AABB.
b2Vec2 GetCenter() const
{
return 0.5f * (lowerBound + upperBound);
}
/// Get the extents of the AABB (half-widths).
b2Vec2 GetExtents() const
{
return 0.5f * (upperBound - lowerBound);
}
/// Get the perimeter length
float32 GetPerimeter() const
{
float32 wx = upperBound.x - lowerBound.x;
float32 wy = upperBound.y - lowerBound.y;
return 2.0f * (wx + wy);
}
/// Combine an AABB into this one.
void Combine(const b2AABB& aabb)
{
lowerBound = b2Min(lowerBound, aabb.lowerBound);
upperBound = b2Max(upperBound, aabb.upperBound);
}
/// Combine two AABBs into this one.
void Combine(const b2AABB& aabb1, const b2AABB& aabb2)
{
lowerBound = b2Min(aabb1.lowerBound, aabb2.lowerBound);
upperBound = b2Max(aabb1.upperBound, aabb2.upperBound);
}
/// Does this aabb contain the provided AABB.
bool Contains(const b2AABB& aabb) const
{
bool result = true;
result = result && lowerBound.x <= aabb.lowerBound.x;
result = result && lowerBound.y <= aabb.lowerBound.y;
result = result && aabb.upperBound.x <= upperBound.x;
result = result && aabb.upperBound.y <= upperBound.y;
return result;
}
bool RayCast(b2RayCastOutput* output, const b2RayCastInput& input) const;
b2Vec2 lowerBound; ///< the lower vertex
b2Vec2 upperBound; ///< the upper vertex
};
/// Compute the collision manifold between two circles.
void b2CollideCircles(b2Manifold* manifold,
const b2CircleShape* circleA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB);
/// Compute the collision manifold between a polygon and a circle.
void b2CollidePolygonAndCircle(b2Manifold* manifold,
const b2PolygonShape* polygonA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB);
/// Compute the collision manifold between two polygons.
void b2CollidePolygons(b2Manifold* manifold,
const b2PolygonShape* polygonA, const b2Transform& xfA,
const b2PolygonShape* polygonB, const b2Transform& xfB);
/// Compute the collision manifold between an edge and a circle.
void b2CollideEdgeAndCircle(b2Manifold* manifold,
const b2EdgeShape* polygonA, const b2Transform& xfA,
const b2CircleShape* circleB, const b2Transform& xfB);
/// Compute the collision manifold between an edge and a circle.
void b2CollideEdgeAndPolygon(b2Manifold* manifold,
const b2EdgeShape* edgeA, const b2Transform& xfA,
const b2PolygonShape* circleB, const b2Transform& xfB);
/// Clipping for contact manifolds.
int32 b2ClipSegmentToLine(b2ClipVertex vOut[2], const b2ClipVertex vIn[2],
const b2Vec2& normal, float32 offset, int32 vertexIndexA);
/// Determine if two generic shapes overlap.
bool b2TestOverlap( const b2Shape* shapeA, int32 indexA,
const b2Shape* shapeB, int32 indexB,
const b2Transform& xfA, const b2Transform& xfB);
// ---------------- Inline Functions ------------------------------------------
inline bool b2AABB::IsValid() const
{
b2Vec2 d = upperBound - lowerBound;
bool valid = d.x >= 0.0f && d.y >= 0.0f;
valid = valid && lowerBound.IsValid() && upperBound.IsValid();
return valid;
}
inline bool b2TestOverlap(const b2AABB& a, const b2AABB& b)
{
b2Vec2 d1, d2;
d1 = b.lowerBound - a.upperBound;
d2 = a.lowerBound - b.upperBound;
if (d1.x > 0.0f || d1.y > 0.0f)
return false;
if (d2.x > 0.0f || d2.y > 0.0f)
return false;
return true;
}
#endif
/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_DISTANCE_H
#define B2_DISTANCE_H
#include "Box2D/Common/b2Math.h"
class b2Shape;
/// A distance proxy is used by the GJK algorithm.
/// It encapsulates any shape.
struct b2DistanceProxy
{
b2DistanceProxy() : m_vertices(nullptr), m_count(0), m_radius(0.0f) {}
/// Initialize the proxy using the given shape. The shape
/// must remain in scope while the proxy is in use.
void Set(const b2Shape* shape, int32 index);
/// Get the supporting vertex index in the given direction.
int32 GetSupport(const b2Vec2& d) const;
/// Get the supporting vertex in the given direction.
const b2Vec2& GetSupportVertex(const b2Vec2& d) const;
/// Get the vertex count.
int32 GetVertexCount() const;
/// Get a vertex by index. Used by b2Distance.
const b2Vec2& GetVertex(int32 index) const;
b2Vec2 m_buffer[2];
const b2Vec2* m_vertices;
int32 m_count;
float32 m_radius;
};
/// Used to warm start b2Distance.
/// Set count to zero on first call.
struct b2SimplexCache
{
float32 metric; ///< length or area
uint16 count;
uint8 indexA[3]; ///< vertices on shape A
uint8 indexB[3]; ///< vertices on shape B
};
/// Input for b2Distance.
/// You have to option to use the shape radii
/// in the computation. Even
struct b2DistanceInput
{
b2DistanceProxy proxyA;
b2DistanceProxy proxyB;
b2Transform transformA;
b2Transform transformB;
bool useRadii;
};
/// Output for b2Distance.
struct b2DistanceOutput
{
b2Vec2 pointA; ///< closest point on shapeA
b2Vec2 pointB; ///< closest point on shapeB
float32 distance;
int32 iterations; ///< number of GJK iterations used
};
/// Compute the closest points between two shapes. Supports any combination of:
/// b2CircleShape, b2PolygonShape, b2EdgeShape. The simplex cache is input/output.
/// On the first call set b2SimplexCache.count to zero.
void b2Distance(b2DistanceOutput* output,
b2SimplexCache* cache,
const b2DistanceInput* input);
//////////////////////////////////////////////////////////////////////////
inline int32 b2DistanceProxy::GetVertexCount() const
{
return m_count;
}
inline const b2Vec2& b2DistanceProxy::GetVertex(int32 index) const
{
b2Assert(0 <= index && index < m_count);
return m_vertices[index];
}
inline int32 b2DistanceProxy::GetSupport(const b2Vec2& d) const
{
int32 bestIndex = 0;
float32 bestValue = b2Dot(m_vertices[0], d);
for (int32 i = 1; i < m_count; ++i)
{
float32 value = b2Dot(m_vertices[i], d);
if (value > bestValue)
{
bestIndex = i;
bestValue = value;
}
}
return bestIndex;
}
inline const b2Vec2& b2DistanceProxy::GetSupportVertex(const b2Vec2& d) const
{
int32 bestIndex = 0;
float32 bestValue = b2Dot(m_vertices[0], d);
for (int32 i = 1; i < m_count; ++i)
{
float32 value = b2Dot(m_vertices[i], d);
if (value > bestValue)
{
bestIndex = i;
bestValue = value;
}
}
return m_vertices[bestIndex];
}
#endif
/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_TIME_OF_IMPACT_H
#define B2_TIME_OF_IMPACT_H
#include "Box2D/Common/b2Math.h"
#include "Box2D/Collision/b2Distance.h"
/// Input parameters for b2TimeOfImpact
struct b2TOIInput
{
b2DistanceProxy proxyA;
b2DistanceProxy proxyB;
b2Sweep sweepA;
b2Sweep sweepB;
float32 tMax; // defines sweep interval [0, tMax]
};
// Output parameters for b2TimeOfImpact.
struct b2TOIOutput
{
enum State
{
e_unknown,
e_failed,
e_overlapped,
e_touching,
e_separated
};
State state;
float32 t;
};
/// Compute the upper bound on time before two shapes penetrate. Time is represented as
/// a fraction between [0,tMax]. This uses a swept separating axis and may miss some intermediate,
/// non-tunneling collision. If you change the time interval, you should call this function
/// again.
/// Note: use b2Distance to compute the contact point and normal at the time of impact.
void b2TimeOfImpact(b2TOIOutput* output, const b2TOIInput* input);
#endif
/*
* Copyright (c) 2006-2009 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2_BLOCK_ALLOCATOR_H
#define B2_BLOCK_ALLOCATOR_H
#include "Box2D/Common/b2Settings.h"
const int32 b2_chunkSize = 16 * 1024;
const int32 b2_maxBlockSize = 640;
const int32 b2_blockSizes = 14;
const int32 b2_chunkArrayIncrement = 128;
struct b2Block;
struct b2Chunk;
/// This is a small object allocator used for allocating small
/// objects that persist for more than one time step.
/// See: http://www.codeproject.com/useritems/Small_Block_Allocator.asp
class b2BlockAllocator
{
public:
b2BlockAllocator();
~b2BlockAllocator();
/// Allocate memory. This will use b2Alloc if the size is larger than b2_maxBlockSize.
void* Allocate(int32 size);
/// Free memory. This will use b2Free if the size is larger than b2_maxBlockSize.
void Free(void* p, int32 size);
void Clear();
private:
b2Chunk* m_chunks;
int32 m_chunkCount;
int32 m_chunkSpace;
b2Block* m_freeLists[b2_blockSizes];
static int32 s_blockSizes[b2_blockSizes];
static uint8 s_blockSizeLookup[b2_maxBlockSize + 1];
static bool s_blockSizeLookupInitialized;
};
#endif
/*
* Copyright (c) 2011 Erin Catto http://box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#include "Box2D/Common/b2Draw.h"
b2Draw::b2Draw()
{
m_drawFlags = 0;
}
void b2Draw::SetFlags(uint32 flags)
{
m_drawFlags = flags;
}
uint32 b2Draw::GetFlags() const
{
return m_drawFlags;
}
void b2Draw::AppendFlags(uint32 flags)
{
m_drawFlags |= flags;
}
void b2Draw::ClearFlags(uint32 flags)
{
m_drawFlags &= ~flags;
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.